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ABSTRACT We present a method for predicting protein
folding class based on global protein chain description and a
voting process. Selection of the best descriptors was achieved
by a computer-simulated neural network trained on a data
base consisting of 83 folding classes. Protein-chain descrip-
tors include overall composition, transition, and distribution
of amino acid attributes, such as relative hydrophobicity,
predicted secondary structure, and predicted solvent expo-
sure. Cross-validation testing was performed on 15 of the
largest classes. The test shows that proteins were assigned to
the correct class (correct positive prediction) with an average
accuracy of 71.7%, whereas the inverse prediction of proteins as
not belonging to a particular class (correct negative prediction)
was 90-95% accurate. When tested on 254 structures used in this
study, the top two predictions contained the correct class in
91% of the cases.

Examination of three-dimensional (3D) structures of proteins
determined by x-ray diffraction and NMR has shown that the
variety of folding patterns of proteins is significantly restricted
(1, 2). Since protein sequence information grows significantly
faster than information on protein 3D structure, the need for
predicting the folding pattern of a given protein sequence
naturally arises. Since the first relatively full classification of
folding patterns of globular proteins (3), researchers have
developed various schemes for classification of protein 3D
structures (4-6) that are essentially based on the same spatial
motifs.

If the prediction is restricted to a small number of structural
classes (less than five), a prediction performance >70% can be
easily achieved by using various methods based on a simple
representation of sequences as vectors of a small number of
general parameters. In the simplest classification, proteins are
usually described in terms of the following "tertiary super
classes:" all a (proteins have only a-helix secondary structure),
all 13 (mainly 3-sheet secondary structure), a+0 (a-helix and
{3-strand secondary structure segments that do not mix), a/13
(mixed or alternating segments of a-helical and 13-strand
secondary structure), and irregular (7-9). Several statistical
methods were developed to predict whether a protein belongs
to one of these classes (10-17). In a recent study on predicting
protein structural class (all a, all 1, or composed of a and 1
elements) from amino acid composition and hydrophobic
pattern frequency information using computer-simulated neu-
ral networks (NNs) and statistical clustering, Metfessel et al.
(18) obtained a prediction accuracy of 80.2%. Consideration of
specific features of folding classes in the form of so-called
hidden Markov models or probabilistic grammars allows a
>2-fold increase in the number of classes of recognition (9).
This method accurately predicts 12 classes; however, the study
gives test results only for 16 sequences.

It is obvious that difficulty of folding pattern prediction
grows rapidly with the number of classes. Even the distinction
between a+13 and a/f3 classes has serious problems because
the parameter vectors of these structure types are located too
close in parameter space (11). As the number of classes in the
classification system increases, the classes become more sim-
ilar and it is more difficult to distinguish among them.

Here, we present a prediction method for 83 folding classes
that uses a combination of protein sequence descriptors ap-
plied to computational NNs. The method was tested by
cross-validation.

Data Base and NNs

A variety of folding classifications have appeared in the last
years, based not only on the grouping of 3D structures but also
on analysis of sequences. Our assignment was based on the
classification scheme 3D_ALI of Pascarella and Argos (6) that
classifies the majority of known 3D structures (254 proteins
and protein domains) into 83 classes, 38 of them having two or
more members and the other 45 classes containing only a single
protein example. This data base was based on a superposition
among protein structures with similar main-chain fold and
contains a large number of protein families with low sequence
homology. The average sequence identity over all possible
aligned Protein Data Bank sequence pairs is 15%.

After all amino acid sequences were substituted by property
vectors (see below) and an assignment to a definite class was
made for each protein in the data base, computer-simulated
NNs were applied (for a review of NNs, see ref. 19). This tool
has been successful in the prediction of protein structural
features (17, 20-23). Three-layer feed forward NNs with
weights adjusted by conjugate gradient minimization using the
computer program BIOPROP (22) were utilized in our study.
Various NN architectures were tested with the number ofNN
hidden nodes (Nhid) varied from 0 to 3, with one or two outputs
(Nout). The simplest geometry with Nhid = 1 and Nout = 2 that
achieved good performance and had a minimum overall
number of nodes [to improve generalization (24)] was chosen
for all calculations (Fig. 1). The number of training examples
is 254, which is basically enough to avoid overfitting (24) since
it is at least 5 times more than a number of adjustable
parameters (NN synaptic weights and thresholds) varied from
11 to 46, depending on a number of inputs used.

Physical and Stereochemical Properties of Amino
Acids Used

Since the NN and all other methods of pattern recognition
require property vectors as input, a sequence of amino acids
should be replaced by a sequence of symbols representing local
physicochemical properties. The first amino acid property used
in this study is relative hydrophobicity of amino acids. The

Abbreviations: 3D, three-dimensional; NN, neural network; HP, hy-
drophobicity attribute; SA, solvent accessibility.
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FIG. 1. Schematic diagram of the architecture of the computa-
tional NN discussed.

classification of Chothia and Finkelstein (4) was used, where
amino acids form three groups: Arg, Lys, Glu, Asp, Gln, and
Asn as polar; Gly, Ala, Ser, Tht, Pro, His, and Tyr as neutral;
and Cys, Val, Leu, Ile, Met, Phe, and Trp as hydrophobic.
The second amino acid attribute we chose is predicted

secondary structure. The methods of secondary structUre
prediction, including NN predictions, have been significantly
improved in recent years and have reached 70% performance
(20, 21, 25, 28). Two NN prediction methods (20, 21), one of
which (21) was modified by us in the program PROBE (26), have
been used in this study. Both of them use a three-state model
(helix, strand, and coil). A consensus prediction among the
above two methods was introduced as a four-state model-
helix, strand, or coil, when both methods give the same
assignment for a given residue, and unknown, when the two
methods disagree.

Predicted solvent accessibility of amino acids was used as the
third amino acid attribute.. Trained NN can correctly predict
solvent accessibility for 72% of residUes in a testing set by using
a binary model (buried/exposed) (23). A residue was consid-
ered to be exposed if >20% of its surface is exposed.

In summary, amino acids are divided into three groups
based on hydrophobicity (hydrophobic, neutral, and polar),
three groups based on secondary structure prediction (helix,
strand, and coil), four groups based on consensus secondary
structure prediction (helix, coil, strand, and unknown), and
two groups based on solvent accessibility (buried and ex-
posed).

Global Protein Sequence Descriptors

We use three descriptors, composition (C), transition (T), and
distribution (D), to describe the global composition of a given
amino acid property in a protein, the frequencies with which
the property changes along the entire length of the protein, and
the distribution pattern of the property along the sequence,
respectively. Some of these were introduced in our earlier work
(27). How to construct these descriptors is explained below by
using a model ainino acid sequence consisting of two kinds of
amino acids.
The model sequence (Fig. 2) includes 10 type A residues (ni

= 10) and 16 type B residues (n2 = 16). The percent compo-
sitions are calculated as follows: n1 x 100.0/(ni + n2) = 38.5%
for A and n2 x 100.0/(ni + n2) = 61.5% for B. These two
numbers represent the first descriptor, C. The second descrip-
tor, T, characterizes the percent frequency with which A is
followed by B or B is followed by A. In this case, there are 10

Sequen ABBABBB;
Sequence numbering 1 5
GfoupA numbing 1 2
GroupBnumbring 1 2 3 4 5 I
A-B trnsitions I I
B-A annsldos I

transitions of this type, that is (10/25) x 100.0 = 40%. The
third descriptor, D, deserves a more detailed discussion. For a
given property of amino acids, the distribution of the property
along the protein chain is described by five chain lengths (in
percent), within which the first, 25%, 50%, 75%, and 100% of
the amino acids with a certain property are contained. In the
example of Fig. 2, the first residue of group A coincides with
the beginning of the chain, so the first number ofD descriptor
equals 0.0. Twenty-five percent of all group A residues (round-
ed to 2 residues) are contained within the first 4 residues of the
protein chain, so the second number equals (4/26) x 100.0%
= 15.4%. Siniilarly, 50% of group A residues are within the
first 12 residues of the chain; thus, the third number is (12/26)
x 100.0% = 46.1%. The fourth and fifth numbers of the
distribution descriptor are 73.1% and 100%, respectively.
Analogous numbers for group B are 7.5%, 23.1%, 53.8%,
79.9%, and 92.3%, respectively.

In summary, 13 numbers are used to describe the model
sequence shown in Fig. 2 with respect to a given property (type
A or B): 2 for composition, 1 for tra-nsition, and 10 for
distribution. Thus, the chain descriptor values to be used as the
input for NN are 38.5, 61.5,40.0, 0.0, 15.4, 46.1, 73.1, 100.0, 7.6,
23.1, 53.8, 76.9, and 92.3.

Combined Protein Sequence Descriptors

For each of the chosen amino acids attributes, all three
descriptors (C, T, D) were calculated, combined, and used as
input parameters for NN training. For the hydrophobicity
attribute (HP), the three numbers represent C-the percent
compositions of polar, neutral, and hydrophobic residues in the
protein. The first number of T is the percent frequency with
which a polar residue is followed by a neutral or a neutral
residue by a polar residue. The second number is the frequency
of a polar residue followed by a hydrophobic residue or a
hydrophobic residue followed by a polar residue. The third
number corresponds to the cases where a neutral residue is
followed by a hydrophobic residue or a hydrophobic residue is
followed by a neutral residue. Distinguishing polar-to-neutral
transition from neutral-to-polar transition did not improve
prediction results significantly (the same for other types of
transitions). The D descriptor has five numbers for each of the
three residue types (neutral, polar, and hydrophobic). Thus the
sequence description of a protein in terms of hydrophobicity
consists of 21 numbers.
Three methods were used for the secondary structure

assignment: prediction of Qian and Sejnowski (20) (SS1),
modified prediction of Holley and Karplus (21) as modified by
Holbrook et al. (26) (SS2), and the consensus prediction of the
two methods (SS3). For the SS1 and SS2 methods (three-state
models), combined descriptors consist of 21 numbers: C (3
numbers), T (3 numbers), and D (15 numbers). For four-state
[helix(h), strand(s), coil(c), and unknown(x)] consensus pre-
diction (SS3), the sequence descriptor consists of 30 numbers:
four numbers for the C, six numbers for the T (h to s or h to
s, h to c or c to h, h tox or x to h, s to c or c to s, s to x or x
to s, and c tox orx to c), and 20 numbers forD-a distribution
of each of four secondary-structure states.
The chain descriptor for solvent accessibility (SA) contains

seven numbers one number for C, the percent composition of
buried residues; one number for T, the percent frequency with
which a buried residue is followed by an exposed residue or an

BBAAAABBBABABBBBBAA
10 15 20 25
3 4 5 6 7 8 910

6 7 9o10 11 1213141516
I I I

I I

FIG. 2. Model sequence consisting of two types of residues-A and B (see text for discussion on the sequence descriptors).
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Table 1. Combined descriptors in general terms of relative
hydrophobicity and predicted secondary structure

Relative Predicted
hydropho- secondary p

bicity* structuret predicted not No.
more than in of NN

Scheme C T D C T D three classes inputs
1 X X 3.5 6
2 X 58.3 15
3 X X 79.9 18
4 X X 67.3 18
5 X X X 83.8 21
6 X 57.5 15
7 X X 66.1 18
8 X X 70.1 18
9 X X X 62.2 21
10 X X X X 84.6 36
11 X X X X X 92.1 39
12 X X X X X 87.4 39
13 X X X X X X 90.2 42

X, particular descriptor is a part of combined descriptor.
*Grouped as neutral, polar, and hydrophobic according to ref. 4.
tPrediction by the method of Qian and Sejnowski (20), a three-state
model (helix, strand, coil).

exposed followed by a buried residue; and five numbers for D,
the distribution of buried residues along the chain. The C and
D descriptors of exposed residues were ignored since in two
group property usually data on one group are sufficient.

General Prediction Scheme and Evaluation of Combined
Protein Chain Descriptors

For each of the 83 classes in the data base, an independent NN
was trained by using the various combination of descriptors as
inputs to distinguish this class from all other classes. For an
amino acid sequence, each network gives one of two answers:
yes, if its 3D structure corresponds to that class, or no, if it
belongs to one of the remaining 82. A training set for each class
consisted of two groups-the proteins from the class and the
group of "others" (i.e., 254 minus the proteins from the class).
The population of these two groups differs significantly in size.
Since the number of examples in each group should be
approximately equal for balanced training (22), we used
weighting procedure: the inputs of the smaller group were
repeated to match those of the larger group. For output, we
used two nodes, where high activity to one node indicated
belonging to particular class, and high activity to the other
node indicated belonging to the other classes. These series of
trainings resulted in 83 sets of NN weights.

After the NN training process, a series of testings was
performed on each of the 254 structures. Ideally each protein
should be assigned to its own class by that class NN and to
others by the other 82 NN. In reality, we usually found not one
but several NNs assign a protein to their respective classes.
Therefore, we accepted the performance as satisfactory if a

given protein sequence is predicted to belong to <3 of 83
classes ('3%), and one of those is correct. The percent of the
proteins that pass this criterion for various combined descrip-
tors is as follows: 83.8% for HP, 62.2% for SS1, 58.6% for SS2
(21 NN input nodes), 50.8% for SS3 (30 NN input modes), and
25.6% for SA (7 NN input nodes).
To select the best combination of descriptors, a series of

experiments on training/testing by using various combinations
of all HP and SS1 descriptors was conducted. The results of a
search for the best chain representation are shown in Table 1.
It is obvious that the performance of a NN using various
combined descriptors as inputs varies significantly. For HP, a
combination of all three descriptors (scheme 5) gives the best
performance. One can see that the D descriptor is the most
important in the scheme, since a combination of the C and T
descriptors by themselves (scheme 1) gives extremely poor
performance. However, all the schemes that include Ds
(schemes 2-5) perform fairly well. In the case of predicted
secondary structure, the situation is similar, but the best
(scheme 8) consists of C and D descriptors without the Ts. As
to the combined HP and SS1 (schemes 10-13), all give good
performance. The best, scheme 11, uses 21 inputs from HP and
18 inputs-the C (3 inputs) and D (15 inputs)-from SS1.
Schemes 5, 9, and 11 were used for further cross-validation.
A summary of NN inputs is shown in Table 2. In the analysis

of 13 combined descriptors presented in Table 1, each protein
sequence was tested 13 x 83 = 1079 times and, thus, a total
number of testings on 254 sequences was 254 x 1079 =

274,066. Additional testing was performed on schemes III, IV,
and VI by using SS2, SS3, and SA (Table 2). It required 83 x
3 x 254 = 63,246 testings.

Cross-Validation by Voting

Cross-validation testing was performed for 15 of the largest
protein classes with four or more protein members (Table 3).
To assemble training and testing sets for a given class, proteins
from the other 82 classes were shuffled by random permuta-
tion and then divided into 10 subsets. One protein from the
class and proteins from 1 subset of other classes were used for
testing and all other proteins of the class and 9 remaining
subsets were used for training. All possible combinations of
proteins from the class and 10 subsets were made, so the
overall number of training/testing sessions for each class of
proteins was equal to 10n, where n is a number of proteins in
the class. This way each protein in a given class was tested 10
times with different subsets and each protein of the set others
was tested n times with proteins in the tested class. For
example, for folding class 16 containing 32 proteins, it means
32 x 10 = 320 training/testing sessions. After all training and
testing sets were assembled, each protein sequence was trans-
formed to a string of descriptors used as inputs for NN training
and testing according to schemes I-VI from Table 2.
For each set, six parallel trainings based on six different

combined chain descriptors were performed and testing was

performed on corresponding testing sets. Two numbers rep-

Table 2. Main combined descriptors used in the cross-validation

Components of combined

Total no. descriptor, no. of
Scheme of NN corresponding NN inputs

No. Name Amino acid attribute inputs C T D

I HP Relative hydrophobicity 21 3 3 15
II SS1 Predicted secondary structure 21 3 3 15
III SS2 Predicted secondary structure 21 3 3 15
IV SS3 Constituent predicted secondary structure 30 4 6 20
V HP+SS1 Scheme 11 from Table 1 39 3+3 3(HP) 15+15
VI SA Predicted solvent accessibility 7 1 1 5

8702 Biophysics: Dubchak et al.
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Table 3. Summary on 3D-ALI classes (6), used in cross-validation testing

Class no. 3D_ALI code Protein Data Bank codes nk

2 AC_PROT 1CMS(1-175), 1CMS(176-323), 4APE(2-174), 4APE(175-326), 2APP(1-174), 10
2APP(175-323), 2APR(1-178), 2APR(179-325), 4PEP(1-174), 4PEP(175-326)

4 BINDING 1ABP, 2LIV, 1LBP, 2GBP 4
6 CA_BIND 3CLN, 5CPV, 3ICB, 4TNC, 5TNC 5
7 GCR 1GCR(1-39), 1GCR(40-87), 1GCR(88-128), 1GCR(129-174), 2GCR(1-39), 8

2GCR(40-87), 2GCR(88-128), 2GCR(129-174)
8 CYTC 451C, 1CCR, 1CYC, SCYT, 3C2C, 155C 6
14 FERREDOX 1FDX(1-54), 1FDX(27-54), 4FD1(1-106), 4FD1(31-57), 1FXB 5
15 GLOBIN 4HHB(a), 4HHB(3), 2MHB(a), 2MHB(o3), 1FDH(y), 1MBD, 1MBS, 2LHB, 12

1PMB, 1MBA, 1ECA, 1LH1
16 IGB 2FB4(L1-109), 2FB4(L110-214), 2FB4(H1-118), 2FB4(H119-221), 2FBJ(L1-106), 32

2FBJ(L107-213), 2FBJ(H1-118), 2FBJ(J119-218), 1FC2(238-339), 1FC2(340-443),
1MCP(Ll-113), 1MCP(Hl-122), lPFC, 3FAB(L1-109), 3FAB(L104-214),
3FAB(H1-117), 3FAB(H118-220), 2HFL(H1-116), 2FHL(H117-213), 2HFL(L1-105),
1F19(L1-108), 1F19(L109-215), lFl9(H1-123), 1F19(H124-220), 1CD4, 1REI,
3HLA(A183-270), 3HLA(Bl-99), 4FAB(Ll-112), 3HFM(L1-108), 1MCW, 2RHE

18 INHIBIT 1TGS, 3SGB, 20VO, lOVO 4
20 NBD 4MDH, 2LDB, 1LDM, 5LDH, 2LDX, 1LLC, 8ADH, 3GPD, 1GPD, 1GD1, 15

1FX1, 4FXN, 2SBT, 3ADK, 8ATC
25 RDX 3RXN, 4RXN, 1RDG, 6RXN 4
28 SBT CSE, 1SBT, 1TEC, 1PRK 4
29 S PROT 1TON, 2PKA, 2PTN, 2TRM, 4CHA, 3EST, 1HNE, 2RP2, 1SGT, 2SGA, 3SGB, 2ALP 12
31 VIRUS 4RHV(VP1), 4RHV(VP2), 4RHV(VP3), 4SBV, 2MEV(VP1), 2MEV(VP2), 15

2MEV(VP3), 2TBV, 2STV, 2PLV(VP1), 2PLV(VP2), 2PLV(VP3),
lRlA(VP1), 1R1A(VP2), 1R1A(VP3)

32 WGA 7WGA(1-43), 7WGA(44-86), 7WGA(87-129), 7WGA(130-171), 9WGA(1-43), 8
9WGA(44-86), 9WGA(87-129), 9WGA(130-171)

Number of classes is in 3D ALI classification (6).

resent a final result of each testing on one combined descriptor:
(i) the NN output of one or zero indicates whether the protein
sequence tested was correctly assigned to the class being tested
or not and (ii) how many proteins from the complementary
subset were correctly assigned to other classes. After obtaining
all six predictions for each testing set, it was possible to make
a final conclusion based on voting. Two systems of voting were
used. In system A (Fig. 3), a protein is assigned to the class
when not less than three out of six schemes (I-VI) simulta-
neously predict a protein to be in the class; in system B, a
protein is assigned when two out of three basic schemes (I, II,
and VI) predict it.
The overall number of training/testing sessions for each

class of proteins equals Tk = plOnk, where k is the number of
the class, nk is a number of proteins in the class k, p equals 3

or 6 depending on the scheme of voting, and 10 is a number of
subsets (see above). We derive two numbers representing the
results of testing for a particular class: Mk, percent of proteins
from class k that are correctly predicted to be in k, and Lk,
percent of proteins from any of the other 82 classes that are
correctly predicted to be in one of those other classes. Jk,
which is analogous to Lk, but only for the 15 largest classes.
The equations used and the results of cross-validation are
summarized in Table 4.

Results and Discussion

Assigning a protein sequence to 1 of 83 folding classes is very
difficult because of the similarity among the classes. In the
present study, we used several different protein chain repre-

Predicted secondary structure

FIG. 3. General scheme of pro-
tein folding class prediction. Rect-
angles, amino acid attributes; trap-
ezoids, protein sequence descrip-
tors; C, composition; T, transition;
D, distribution; rhombuses, predic-
tion scheme (combined descrip-
tor); pentagons, voting system; A,
consensus prediction based on pre-
diction schemes I-VI; B, based on
prediction schemes I-III.

Biophysics: Dubchak et al.
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Table 4. Results of cross-validation for 15 classes having four or
more proteins

k nk P Tk Sk Mk Lk Jk

2 10 6 600 14,640 75.0 79.1 90.7
3 70.0 85.9 89.1

4 4 6 240 6,000 75.0 88.1 98.1
3 75.0 92.3 99.8

6 5 6 300 2,470 44.0 95.9 98.7
3 50.0 96.9 99.1

7 8 6 480 11,856 77.5 86.1 99.2
3 60.0 92.3 98.3

8 6 6 360 8,964 60.0 95.9 96.9
3 61.7 95.7 96.4

14 5 6 300 7,470 58.0 96.1 99.6
3 46.0 94.4 98.2

15 12 6 720 17,568 87.5 95.8 94.9
3 68.3 94.9 93.6

16 32 6 1920 42,624 86.3 92.9 91.7
3 75.9 94.8 83.2

18 4 6 240 6,000 75.0 88.6 100
3 40.0 85.0 100

20 15 6 900 21,510 76.7 94.6 81.9
3 70.0 91.8 79.5

25 4 6 240 6,000 65.0 96.5 99.8
3 72.5 94.3 99.7

28 4 6 240 6,000 50.0 82.7 98.7
3 47.5 77.2 98.8

29 12 6 720 17,568 70.8 85.9 80.1
3 73.7 85.7 81.7

31 15 6 900 21,510 75.3 91.0 89.7
3 61.3 88.6 89.5

32 8 6 480 11,856 100 97.8 99.8
3 100 92.5 99.8

k, Number of class; nk, number of proteins in class k; p, number of
chain descriptions participated in voting; Tk = plOnk, the overall
number of training/testing sessions for class k proteins; Sk = p(254 -
nk)nk, total number of testings of proteins not belonging to k; Mk,
percent of the proteins from class k correctly predicted to be in k; Lk,
percent of the proteins from other classes correctly assigned to one of
those other classes; Jk, percent of class k proteins correctly assigned to
the group others being in complement subsets to other 14 classes. The
overall number of testings for 15 classes equals I Tk + I Sk = 221,676.

sentations to overcome this difficulty. We show that increasing
the number of independent chain representations leads to an
improved protein class prediction without greatly increasing
the number of parameters for chain description.

In our work, we chose to do validation tests in a large number
of ways for the 15 classes with four or more members. As
evident from Table 4, prediction performance Mk for different
classes varies significantly. This means that certain types of
folds are best recognized by specific parameter types. Scheme
A withp equal to 6 performs better than scheme B withp equal
to 3 for 9 classes out of 15, in 4 cases it works worse, and in 2
classes it gives the same result. The average numbers forMk for
A and B are 71.7 and 64.8%, respectively. What this means is
that as more chain descriptions or groups of parameters are
used in the voting scheme, better class prediction performance
is achieved. As to the recognition performance Lk and Jk, both
voting schemes give very close results: Lk = 91.2% for A and
90.8% for B; Jk = 94.6% for A and 93.7% for B. Lk, as well as
Jk, characterizes the ability of our prediction scheme not to
recognize a protein as belonging to an inappropriate class or,
in other words, not to assign a protein to a particular class
incorrectly ("false positive"). The main difference between Lk
and Jk is in the number of proteins for which these character-
istics were calculated. Lk identifies a performance for all 254

numbers for both voting schemes proves that the performance
of this approach in distinguishing between a particular class
and others is extremely high and depends neither on a number
of proteins in this class nor on their sequence similarity.
When tested on 254 structures used as the data base in our

study, the top predicted class was correct in 59% of the cases,
the top two predictions contained the correct folding class in
91% of the cases, and the top three predictions included the
correct class in 97% of the cases.
For a larger set of folding classes, additional chain descrip-

tors and combined descriptors are needed. We assume that
further addition of other parameter sets can help to increase
the performance and to add more classes for recognition.
Additional amino acid attributes, such as charge, side-chain
bulk, backbone flexibility, hydrophobic moment, and various
types of descriptors, could be used.
A computer program for the prediction of protein folding

class described here is available on request from the authors.
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